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I. Introdurt-;.c~n __-..- _,.___._ 

A charged pz.rti~c.!.e beam line is simply a set of magnets piacec! 

in a p2Ced.etel:i~lined SGqUeIiCe and used to transmit particles. The 

trajectories of the particles begin at some point and travezse each 

magnet in turn until they arrive at a final point. The be&x, or 

envelop, of all. such trajectories passed by the beam line, will have 

charzcteristics at this final point which are determined by the r.atE:;e 

of tlie various magnets. The object of any design is to determine tti+? 

macjne~t charac-Leristics necessary to achieve certain desire2 beam 

proper-ties at the end of the system. 

~k,;e computations are us~all~y dcne by ex>ressinq the fin51 

c00rdin;te.s of a trzjcctory as a Taylor series expansion OT the 

initi~i3.1. cooud.inates. Since 2. set of six coordinates is xsec! ti:i: 

coeificients 02 the cxpsnsicn are natriccs. l'or systems klli.7 3,x(12 

illj.ti;l i?l-i;iSC S;~?CIC!CZ it i.S IifJCC-.i.zc.~L TL-F--~ to ccjr,siler h;icjk:er o;&er te:rsS. 

I;uch larcje initi.al phase sLl&cC ccllfi.cj1:rF~ Lo '- 1 on5 ccclir rw:i often 

j-2 lcv'cr C?l:i:rsjJ bf?a~:;. The abi:t:.ty tc calcuiate anaiyticall1 t>,e ;~,i,;:; :.;.I 

cGcff~j.c:jer;ts ~:oc].cfl he i q:rcat aid in deSi~nii?<f SC& t,eFS!S. scc5 bCc.LS 

~:ou].c! k,e ci‘ use j,n ca,ncer, thcrityy, as I;i.~h resoluticr; ol~ectrcr, 

p~cro!;cope.s, atid in nucle;r and p2rticl.e plil~sics. 

y-pie fj,rc.ti _ . ar,a r,cco~d~ o1,dc.r terms in t.hj.s sol~l;t:ior: have l;Ccr~ 

k,'orire(; CUf ill-,~: iilcc cW;-~l o:;ed ix crcritj.ng l2e;:r.i 1i.x designs. l:i.c;k.er 

ori.o:;- n:al:ri, cct2fIi.cici-Ls are r;uff~i.ci.ent.l~y c:or;.plici,;:ctc; 50 25 to reccirc 

~~].q;eL;r;ric. ni,:rlj.pul;lti~on by cr6n;:ui~er. v;cf cic,bor;,t;, b:clow in <;xi:tC:r 

SC-;;.??. c,r, ?:CW ?;rl c1;t;:i.x F; ,~Z cl-, :i c, I ii ,I : :i~ 0 n s . 
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II. The equa’iFOrls of IilOtiOn - _.- .-.. 

%he motioii of a charged particle in a static magnetic field is 

given, by sent:; n's the time derivative of the momentuin equal to the 

Lorentz Force. 

;=qV-XB (1) 

It is convenient to solve this equation in a special coordinate 

system. For this purpose we define a reference trajectory of a given 

momentum pewhich begins at the origin and passes through each magnet 

in turn, In traversing a given magnet it experiences uniform magnetic 

field. In this sense, both magnets. and beam line are somewhat idealized. 

To determine the coordinates of a given point we construct a plane 

containing this point through which the central trajectory passes pzr- 

pendiculsrly. The longitudinal coordinate t is the length of the ten- 

tral trajectory up to the point of intersection with the plane. me 

transverse coordinates x and y are the two coordinates in the constrncted 

plane with the reference trajectory passing through the origin. To de- 

scribe the behavior of a trajectory at a given point we employ a vector 

of six coordinates. 

X 
X’ 

x=y 

-Ii Y’ 
R 
6 

(21 

The newly appearing quantities are x' and y' which are dx/dt and 

dy/dt respec~tivcly, R which is tile difference in longitudinal :,,oslt;.c;; 

from a particle on the central trajectory for equal times of flight, 

and 6 the fractional derivation of the momentum-from that of the c+e;i- 

tral. trajectory. 
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If we then expand the equations of motion in- powers of these 

coordinates we arrive at 

x" + kx2x = second and higher order terms (3) 

Y " + ky2 - y - second and higher order terms. (4) 

Hence forth we will illustrate the problems by referring only to 

equation (3). Equation (4) is handled similarly. The second and 

higher order terms may be represented symbolically as 

second and higher order terms = EXX + Fxxx + . . . (5) 

where E is a matrix with three indices and Exx means 

CE’ ‘jxk’ jk ijk 

the index i indicating the coordinate to which the equation as?lies. 

The matrix F has four indices and is defined similarly. 

III. Solution of thexations --__ -- 

A. First Order 

The first order equations of motion are obtained by taking CY.;; 

those terns linear in the six coordinates, The solutions to this 

equation are also linear and the final set of coordinates of a tra- 

jectory can be given as a transfer matrix times the initial set. 

Xi(l) = C Rij Xj (0) (6) 
j 
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The matrix R now rrprescnts the first order properties of the beam 

line. Beam lines are generally designed so that certain elements of 

the R matrix will have certain specified values. 

!I'wo specific solutions are of interest and will be referred to 

later. They are the sine-like trajectory Sx with initial vaiues 

Sx(Q) = o., Sx' (0) = 1, and the cosine-like trajectory with initial 

values Cx(0) = 1, C!x'(O) = 0. 

The R matrix for an entire system can be obtained by multiplying 

the matrices for the individual elements. Individual R matrices for 

different types of magnets have been evaluated analytically. 2 

B. Second Order Terms 

To determine the second order terms, na;;lely the quadratic depen- 

dences of the final coordinates on the initial ones, we now substitute 

the first order solutions for the coordinates into the second order 

terms on the right side of equations (3) and (4) so that 

CE ijk Xj(t) Xk(t) = C Eijk RjL(t) Rkm(t) XQ(0) X,(9) i; 
jk jkRm 

If we now define a Green's function by 

Gx(t,i) = S,(t) Cx(<) - Sx(<) Cx(t) 

we can obtain second order matrix elements in the form 
t 

T ip;m(t) = I Gx(t,5) Jo EijlC Rj~(Si Rkrn(i) dr, 
0 



'The coordi~nates for a trajectory at tht? final point in a system may 

now he expressed to second order in terms of the initial coordinates 

as 

Xi(l) := C Rij Xj (0) + C Tijk Xj(o) Xx(o) 

j jk 
(ICI 

Second order transfer matrj.x elements for various types of magnets 

have been worked out analytically. 2 Once again, the first and second 

order matrices for an entire system can be obtained by multiplying 

together the matrices for individual elements. 

IV. Puture Extensions to Higher Orders -.~- 

Once sol.utions for a given order have been obtained, the next higher 

order may be obtained by the iterative technique described above. 'lo 

obtain the third order matrices, one wouid substitute the second order 

solutions into the right hand sides of equations (3) and (4). Tile tei.;s 

contributing to tile third order matrices would be 

K. 
unnp = 

Z E. 
jk zjk (t) TknD(t) i- Tj,(t) RkpW L 1 

+ c 
jkl. "ijk9. Rjm(t) sil(t) Rip(t) (1;) 

and the third order matrices themselves would be given as 
I. L 

u. = ?mnp Gx(t,5) K inmp(5) dc (12) 

Extension to fourt!i order would be done by a similar iteration usi;;g 

the third order solutions. As before, the m,7;;ricer, for ;in entire i;yr,te:: 

of a given order cov,ld be obtained by multiplying together natrica:; for 
:ind.iv:;ilu;il c:cm~~~,il:-: , 
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The third order coefficients in the equations of motion in an 

arbitrary bending magnet have been derived. 3 The corresponding 

fourth order terms have not been derivce. Similarly the transfer 

matrices for third and fourth order have not been evaluated. Since 

six coordinates are involved the number of different matrix elements 

of third or fourth order is great, and tlie complexity of each term 

increases substantially as the order increases. 

Therefore, we must conclude that the only practical way to 

evaluate third and fourth order matrix elements is by using aigebraic 

manipulation techniques on a com;?uter. we would first expand the 

equations of motion to fourth order and collect terms. Then we co.~:d 

isolate given terms, multiply by the Green's function, and perform 

the integrals by using substitution techniques, The final expressions 

could be incorporated into beam optics computer programs. 

The number of fundamentally different types of magnet iS small, 

so the integrals need be evaluated only a small number of times. EC:\:- 

ever, once done, the resulting advances in the state of the art of 

charged particle beam design would be great. 
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